Retrieval of Context-Associated Memory is Dependent on the Cav3.2 T-Type Calcium Channel
نویسندگان
چکیده
Among all voltage-gated calcium channels, the T-type Ca²⁺ channels encoded by the Ca(v)3.2 genes are highly expressed in the hippocampus, which is associated with contextual, temporal and spatial learning and memory. However, the specific involvement of the Ca(v)3.2 T-type Ca²⁺ channel in these hippocampus-dependent types of learning and memory remains unclear. To investigate the functional role of this channel in learning and memory, we subjected Ca(v)3.2 homozygous and heterozygous knockout mice and their wild-type littermates to hippocampus-dependent behavioral tasks, including trace fear conditioning, the Morris water-maze and passive avoidance. The Ca(v)3.2 ⁻/⁻ mice performed normally in the Morris water-maze and auditory trace fear conditioning tasks but were impaired in the context-cued trace fear conditioning, step-down and step-through passive avoidance tasks. Furthermore, long-term potentiation (LTP) could be induced for 180 minutes in hippocampal slices of WTs and Ca(v)3.2 ⁺/⁻ mice, whereas LTP persisted for only 120 minutes in Ca(v)3.2 ⁻/⁻ mice. To determine whether the hippocampal formation is responsible for the impaired behavioral phenotypes, we next performed experiments to knock down local function of the Ca(v)3.2 T-type Ca²⁺ channel in the hippocampus. Wild-type mice infused with mibefradil, a T-type channel blocker, exhibited similar behaviors as homozygous knockouts. Taken together, our results demonstrate that retrieval of context-associated memory is dependent on the Ca(v)3.2 T-type Ca²⁺ channel.
منابع مشابه
Behavior Training Reverses Asymmetry in Hippocampal Transcriptome of the Cav3.2 Knockout Mice
Homozygous Cav3.2 knockout mice, which are defective in the pore-forming subunit of a low voltage activated T-type calcium channel, have been documented to show impaired maintenance of late-phase long-term potentiation (L-LTP) and defective retrieval of context-associated fear memory. To investigate the role of Cav3.2 in global gene expression, we performed a microarray transcriptome study on t...
متن کاملT-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants
The fine-tuning of neuronal excitability relies on a tight control of Ca(2+) homeostasis. The low voltage-activated (LVA) T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms) play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in brain functions is still poorly characterized. He...
متن کاملInteraction between cannabinoid receptors and inhibition of L-type calcium channel on passive avoidance learning and memory in male rats
Introduction: There is currently a debate over the interaction between Ca2+ channels and cannabinoid system on learning and memory processing. In this study, we examined the effect of acute injection of cannabinoid agonist (Win- 55212-2) (Win) or antagonist (AM251), following chronic injection of verapamil, as a L-type Ca2+ channels blocker, on passive avoidance (PA) test in male Wistar rats...
متن کاملAugmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A.
Ca2+ influx through T-type Ca2+ channels is crucial for important physiological activities such as hormone secretion and neuronal excitability. However, it is not clear whether these channels are regulated by cAMP-dependent protein kinase A (PKA). In the present study, we examined whether PKA modulates Cav3.2 T-type channels reconstituted in Xenopus oocytes. Application of 10 microM forskolin, ...
متن کاملThe Deubiquitinating Enzyme USP5 Modulates Neuropathic and Inflammatory Pain by Enhancing Cav3.2 Channel Activity
T-type calcium channels are essential contributors to the transmission of nociceptive signals in the primary afferent pain pathway. Here, we show that T-type calcium channels are ubiquitinated by WWP1, a plasma-membrane-associated ubiquitin ligase that binds to the intracellular domain III-IV linker region of the Cav3.2 T-type channel and modifies specific lysine residues in this region. A prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012